15-Puzzle (part I)

Part I of this ’15-Puzzle’ project was writing a simple sketch that shows the puzzle in its solved state, then shuffles it and lets you solve it manually. The more challenging part, of course, will be to write a generic solver algorithm that fits inside the limited memory of an Arduino Uno (and finishes within a reasonable amount of time).


First, I considered the following algorithms:

  • Human approach algorithm. Reasonably simple to write, but it’s not likely to find the fastest solution in terms of moves. It also becomes more complicated if you want to program the tricks that humans develop by thinking moves ahead.
  • Dijkstra’s algorithm, which would be a nice tribute to my former teacher. It will find the shortest solution, but may not fit into an Uno (and may be rather slow as well).
  • An A* algorithm (had never heard of it until today). It promises to find the shortest solution and, based on heuristics, will usually be faster than Dijkstra.

It didn’t take long before I realized that options 2 and 3 are definitely out of Arduino Uno’s league. Being graph search algorithms, they require storage of many nodes and paths during the search process. Since every node is a permutation of 16 digits, the sketch would certainly run out of memory.

So what remains is the challenge of implementing option 1. For nostalgic reasons, I’m going to use a method that I figured out when I was 8 years old (so probably not the most efficient way to solve this puzzle).

Will be continued. For now, here’s the sketch of part I: