Radar Love

My What’s Up? flight radar sketch for esp8266 relies on adsb-exchange.com for its data. In order to do something in return, I bought this ADS-B receiver and a decent 1090 MHz antenna*.

The idea is to become a feeder for the adsb-exchange.com and flightaware.com servers, sharing transponder data that’s picked up from planes within reach of my receiver.

The quickest way for me to test the device was by plugging it into a Windows 10 tablet. Everything turned out to be simple: within 10 minutes I was looking at “my airplanes”, quietly moving over a map. Even with the antenna placed indoors, the receiver managed to ‘see’ planes at a distance of up to 340 355 390 km! (even> 450 km after opening the window). If my rough calculations are correct, that’s close to the distance where an aitplane at 12 km altitude will disappear behind the antenna’s horizon. Impressive.

This is the (free) software that I used on Windows 10:

  • zadig : this magic tool lets you replace the default Windows driver for the dongle by an alternative driver that supports RTL/SDR functions. This needs to be done just once (per usb port?).
  • dump1090 : extracts and decodes the received ADS-B messages. Keep this program running because it provides the source information for virtual radar (see next).
  • virtual radar : starts a local web server and opens a console window with some statistics + the url of a local web page, displaying all planes within reach of the receiver.

After some experimenting in order to find the best antenna position, my receiver is now part of a Raspberry Pi-based FlightAware ADS-B feeder. Next step will be to feed the  adsb-exchange.com database simultaneously.

Piaware Skyview

*Surprisingly, this € 60 antenna performs only slightly better than a cheap 6.8 cm antenna that came with a Nooelec SRD dongle. Placement of the antenna is clearly more important.